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Scientific Background. With the rising popularity of Deep Learning (DL), generative models are now 
capable of generating timbral and musical structures with very limited human control and intervention. 
However, the opacity of deep neural networks makes it difficult to characterize precisely the way these 
structures are represented in generative music models. This makes the question of both computational 
and musicological analysis of generative music models especially challenging. 
In spite of this, geometric approaches to DL have been a topic of growing interest over the past decade 
[BBCV21] [Web25]. This area of research focuses on the analysis of underlying geometric invariance in 
data in order to explain the success and efficiency of various DL architectures. A notable example of this 
approach can be found in Mallat’s geometric interpretation of image classifying deep convolutional 
networks [Mal16], via the formalism of Lie Groups. The geometric approach to machine learning has also 
found fruitful application in the audio domain.  For instance, the use of Multiscale Spectrograms (MSS) 
with Differentiable Digital Signal Processing (DDSP), as proposed by recent studies, offers an affinized 
representation of the Weyl-Heisenberg group [Ard24] [EHGR20], establishing the notion of geometric 
invariance on the perceptual micro-timescale. Likewise, the Joint Time-Frequency Scattering (JTFS) 
transform formalizes notions of geometric invariance on the perceptual mesoscale [ALM19] [CHC+23]. 
While these approaches are successful under certain limitations, they pose issues in the context of larger 
musical timescales. Furthermore, geometric analysis of abstract musical features relevant to music theory 
such as rhythmic structure, musical form, phrase development, do not exist in the literature. The goal of 
this PhD is to develop a principled approach for bridging the gap between high-level musical structures 
and their low-level short-timescale representations, through learning. 
  
Scientific objectives and justification of the approach. The scientific objective of the thesis is to 
leverage the unifying theoretical power of geometric deep learning in order to provide a better 
understanding of representations of sound and music in the field of generative musical AI. Our central 
research hypothesis is that group representation theory—which provides insight into the structural 
invariance preserved under different geometric transformations—is an appropriate framework to 
articulate the various types of representations involved in generative AI music. In particular, this involves 
mathematical representations of various generative models, musicological representations of the input 
and output of these models, and cultural representations of both DL as a technology, and generative music 
as a new type of computer music, making this an inherently interdisciplinary research endeavor. 
First, this PhD project will focus on studying the computational properties of various deep learning (DL) 
models for music generation. Using synthetic data, experiments will be conducted to analyze geometric 
invariance within existing architectures such as DDSP [EHGR20], RAVE [CE21], and MusicGen [CKG+ 24]. 
This work will then be extended to diffusion models like REF, which have led to significant breakthroughs. 
Our approach involves incorporating Lie Group structures into key components such as linear attention 
mechanisms [Mamba]. The challenges fall into two main categories: Model Design and Generation- 
Developing an appropriate DL model capable of successfully generating meaningful musical signals. This 
requires expertise in deep learning, an area where E. Oyallon specializes, as well as proficiency in signal 
estimation, where C. Celle has expertise. Latent Space Analysis- Investigating whether the model 
naturally forms a structured latent space remains an open question.  
 
Second, during this PhD, a wide ethnographic study will be conducted with computer scientists and 
musicians using these models. In particular, the candidate will take Ircam’s ACIDs team, specialized in 



music DL, as a case study. ACIDs is particularly relevant because it regularly collaborates with 
contemporary music composers both within and outside Ircam productions (Alexander Schubert, Holly 
Herndon), and contains as members engineers who are also musicians who use RAVE models in their own 
musical practices, involving experimental and improvisational music. This combination of methods will 
provide the desired integration of mathematical, musicological, and cultural representations. 
 
The Collegium Musicae environment. This research aligns both with the “Improvisation, apprentissage, 
intelligence artificielle” axis of the Collegium Musicae, since improvisation is among the use of DL models 
covered by the project. It also aligns with the “Construction des savoirs musicaux” axis of the Collegium, 
since it proposes a new theoretical framework to articulate knowledge about the outputs of music 
generative models. This research plainly fits the approach of APM, geared towards the analysis of music 
and music technology in practice. Finally, the project further complements IRCAM’s broader initiatives in 
computational creativity, human-machine co-creativity, and AI-assisted composition. 
 
Profile Candidate. The candidate will have a double specialization in DL engineering and music. Ideally, 
they would have first-hand experience in the design, training, and use of audio and music generative 
models and formal training or demonstrable knowledge of the mathematical theory behind state-of-the 
art DL models. Conversely, formal training or demonstrable knowledge of music theory, music 
composition or musicology is expected. 
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