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Abstract

This PhD project aims at foundational results on the complexity of the so-called MinRank problem which

takes a key role in the design of post-quantum cryptosystems based either on error-correcting codes or on

multivariate cryptography. The PhD candidate will leverage reductions to polynomial system solving and

e�cient linear algebra subroutines with an approach driven by the algebra of the MinRank problem.

Supervision team and scienti�c positioning. This PhD will be supervised by V. Neiger and L. Perret at Sor-

bonne University and É. Schost at Waterloo University, as a joint PhD at both universities through a “co-tutelle”

agreement. V. Neiger is an expert on computer algebra and Gröbner bases. He recently studied the security of

some rank metric code-based cryptosystems. L. Perret has a strong and renowned expertise in Post-Quantum

Cryptography (PQC), in particular, on the use of computer algebra techniques to assess the security of cryp-

tosystems. He already contributed to the development of MinRank-based attacks in multivariate cryptography.

É. Schost is a top expert in computer algebra and polynomial system solving. He contributed to several results

on determinantal systems which play a central role in this PhD project.

Adequacy to the QICS doctoral program. In 2016, the US National Institute for Standards and Technologies

(NIST) started a standardization process to renew current public-key standards by post-quantum cryptosystems.

Currently at the third round of the process, a �rst selection of standards will be announced soon. Then, the

e�ort will be pursued with the analysis of selected round-3 candidates in a fourth round (with possibly new

submissions), targeting the future standardization of a second set of algorithms. PQC is part of the range of

quantum technologies which are in the scope of QICS. The international academic and industrial context makes

this PhD project topical and relevant with respect to the goals of QICS.

1 Scienti�c context and objectives

1.1 The MinRank problem in post-quantum cryptography
Let K be a �eld and " be a ? × @ matrix with entries in the polynomial ring K [G1, . . . , G=] (further, we assume

that ? 6 @). The MinRank problem consists in determining the minimum A ∈ ℕ for which there exists x ∈ K=

such that the evaluation of " at x has rank less than A . We call the set of points satisfying this property the

realization set of the considered MinRank instance (in K=
).

This problem is known to be NP-hard and several post-quantum cryptosystems (i.e. which are expected

to be immune against a quantum attacker) rely on the NP-hardness of MinRank; see for example GeMSS and

ROLLO which have been submitted to the NIST post-quantum cryptography standardization process. The post-

quantum �avour of the MinRank problem is actually only one of its application domain. It has a long story and

has been intensively studied from the mathematical viewpoint.

For instance, it is already known that the set of points realizing a MinRank instance has codimension (? −
A ) (@ − A ) when the entries of the matrix " are chosen generically. The degree of such a set, which measures

its complexity – for instance, when the set is �nite, its degree coincides with its cardinality —, is also known

through an involved closed formula. We refer to [7] for further properties of determinantal ideals.

The connection of MinRank to polynomial system solving is rather immediate. The realization set of a

MinRank instance can be de�ned by the simultaneous vanishing of all A × A minors of the matrix " . It can also

be de�ned as the projection of the solution set to the kernel equations ·" = 0 where is a (?−A +1)×? matrix

of full rank, with unknown entries. Note that both modelings have been used in post-quantum cryptography to

investigate the security of some cryptosystems [5, 11].

1.2 Polynomial system solving and Gröbner bases
As sketched above, solving a MinRank instance boils down to polynomial system solving. A classical and e�cient

framework for doing so is provided by the theory of Gröbner bases and the algorithms for computing them.

Given a polynomial sequence (51, . . . , 5B ) in K [G1, . . . , G=], we consider the ideal 〈51, . . . , 5B〉 it generates, i.e. the
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set {@1 51 + · · · + @B 5B | @8 ∈ K [G1, . . . , G=]}. Gröbner bases provide appropriate bases of the �nite dimensional
vector spaces �3 = {@1 51+· · ·+@B 5B | deg(@8 58 ) 6 3} for3 ∈ ℕ once an order � on the monomials inK [G1, . . . , G=],
compatible with multiplication, is given. Thanks to the Noetherianity of the polynomial ring K [G1, . . . , G=], it

turns out that bases of these nested vector spaced for a large enough 3 ∈ ℕ allow us to de�ne a normal form
from K [G1, . . . , G=] to the classes of the equivalence relation 5 ' 6⇔ 5 −6 ∈ 〈51, . . . , 5B〉. A consequence is that

one can then compute “modulo the input equations” and then decide the existence of solutions with coordinates

in an algebraic closure of K, describe them through a triangular representation, etc.

The F4 algorithm [8] basically provides e�cient subroutines to compute bases of the nested vector spaces �3
by taking as generators the row vectors of the coe�cients (sorted w.r.t. �) of the<58 ’s where< ranges over a

subset of well-chosen monomials such that deg(<58 ) 6 3 . The bulk of the computation is to perform Gaussian

elimination on the matrix formed by stacking these row vectors. To achieve practical e�ciency, it actually reuses

the basis computed for �3 to compute the one of �3+1 which leads to faster Gaussian elimination steps.

It turns out that the matrices constructed this way are generically rank defective, leading to useless compu-

tations: some rows reduce to zero. Many such reductions to zero simply come from the commutativity of the

polynomial ring. Indeed, since 58 59 = 59 58 , there is a non trivial linear relation between the row vectors<58 and

<′59 when < (resp. <′) ranges over the monomials in 59 (resp. 58 ). The F5 algorithm [9] introduces a module

view on Gröbner basis computations (in the sense of commutative algebra) and a data-structure, called signature,

which allows us to keep track of these linear dependencies, hence computing a Gröbner basis by building full

rank matrices in generic cases. This yields kind of an optimal framework for computing Gröbner bases. Besides,

an accurate complexity analysis of a variant of the F5 algorithm is given in [4].

1.3 Objectives of the PhD
The central issue which is at the genesis of this thesis is that polynomial systems coming from the MinRank are

not generic. Complexity studies of the F5 algorithm do not apply there. The only complexity estimates which are

known are the ones in [10] which can be seen as a preliminary study of the algebraic properties of the MinRank

systems to identify the largest size of the matrices considered during the Gröbner basis computation and deduce

an upper complexity bound. The goal of this PhD is to adapt the F5 algorithm to the MinRank systems, obtain

the most accurate possible upper and lower bounds on the complexity and apply the new derived algorithms to

challenging instances coming from the future post-quantum standards.

2 Research program

2.1 The algebra of MinRank
The �rst key methodological ingredient to settle is to understand how the algebra of MinRank systems gives rise

to rank defective matrices even when using the F5 algorithm. This requires a deep understanding of an algebraic

object named module of syzygies, which is rather involved in the case of ideals generated by MinRank systems.

In the case of the modeling based on the A × A minors of the matrix " , an easy observation shows that there are

syzygies which actually do not come from the commutativity of polynomials. Indeed, considering the Laplace

expansion of (A + 1) × (A + 1) minors, one sees that some algebraic combinations of the A × A minors actually

lie in the ideal generated by the MinRank system under consideration. This will a�ect the behaviour of the F5

algorithm, yielding rank defective matrices.

Hence, a �rst step is to establish under which conditions these syzygies, combined with the aforementioned

usual ones coming from commutativity, generate the full module of syzygies; and otherwise to �nd a description

of the remaining syzygies that are not generated. One may investigate such theoretical issues in the context

where K is a �eld of low characteristic as this classically induces some di�culties. Last, but not least, in case the

entries of the matrix " are not generic themselves, we will need to investigate how this a�ects the module of

syzygies (we will concentrate on extra structures coming from post-quantum cryptography). To do so, we will

start from classical results in textbooks of commutative algebra dealing with determinantal ideals [7].

2.2 Modi�cation of the F5 algorithm
As sketched above, understanding the module of syzygies of the MinRank systems is the key to design F5-like al-

gorithms adapted to these systems. The �rst step towards an e�cient F5 variant for MinRank systems is to adapt

accordingly the stored signatures of the classical F5 algorithm to avoid the reductions to zero which are induced
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by the syzygies (in particular, the ones which we already identi�ed above). A next step, is to investigate extra

algebraic properties of MinRank systems to circumvent di�culties which may arise from the over-determinacy

of MinRank systems (when using the modeling through minors) – this is indeed an issue to consider since the

F5 algorithm is incremental. Also, as above, when the base �eld K has small characteristic or the entries of "

enjoy extra properties, dedicated variants will be designed.

2.3 Complexity of the MinRank problem
The next steps will be to study as accurately as possible the complexity of these algorithms. This is an involved

question; in particular an accurate complexity analysis should �t in the framework of amortized complexity

theory to take into account rows which are already reduced when encoding the aforementioned nested vector

spaces �3 . The machinery underlying this type of complexity analyses uses generating series “à la Flajolet”,

which are called Hilbert series.

Another ambitious goal is to obtain lower bounds for these linear algebra based techniques, by determining

the minimal sizes of objects which must be computed within this framework.

2.4 Applications in post-quantum cryptography
It is crucial to investigate the security of future post-quantum standards and the topic will remain vivid in

the next few years. Since the hardness of MinRank is central for several post-quantum cryptosystems, one

can anticipate that the expected fundamental results, which were sketched above, will greatly impact towards

this goal. In a recent series of papers, e.g. [1, 2, 3, 6, 12], authors proposed new approaches to attack post-

quantum cryptosystems with MinRank as well as novel heuristic techniques for solving MinRank that led to

new expected complexity bounds on MinRank. The outcome of this PhD project is then to provide a more

rigorous framework to assess the new complexity results stated for MinRank and remove, as much as possible,

the unproven arguments of the existing heuristic techniques.
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