
Statistical Design of Serine Protease Substrate Specificity 

• Context:
We study the problem of engineering enzyme substrate specificity using S1A proteases as a model 
system. These enzymes belong to a large family including trypsin, chymotrypsin, elastase, that spans 
a wide array of host species and are involved in many processes. More than 150,000 sequences of 
the corresponding Pfam database entry are now available. These enzymes share the same global fold 
and catalytic mechanism which relies on a triad of three conserved amino-acids in their catalytic site. 
Their structure and biochemical properties have been characterized in detail (1). 

These proteases catalyze the hydrolysis of a peptide bond between two successive amino-acids in 
proteins, with generally a very high substrate specificity. They cut indeed peptide chains at very 
precise motifs, almost uniquely defined by the amino-acid immediately preceding the cut bond. For 
instance, trypsin cuts very efficiently peptide bonds that are downstream of the basic amino-acids 
arginine and lysine (nearly regardless of flanking amnio-acids), and cuts typically 106 times less 
efficiently bonds downstream of other amino-acids. For our purpose, engineering their exquisite 
substrate specificity has proven challenging in spite of the wealth of data available on their 
structure and catalytic mechanism and of many efforts towards this goal for the past decades (1). 

• State of the art:
The achievements and limits of the structural approach for substrate specificity engineering. 

Mutating amino-acids of the substrate binding pocket, which is generally considered as structurally 
distinct from the catalytic site, seemed a promising route for enzyme substrate specificity 
engineering. Yet, in S1A proteases and other related classes of serine proteases, mutations aiming at 
modifying the substrate binding pocket in order to fit a new substrate are most often strongly 
deleterious for catalytic activity towards all tested substrates, including the initial substrate (2–4). 
In the rare cases where targeted substrate specificity conversion was achieved, the underlying 
mechanism may not be the expected one (1, 5). Namely, the binding affinities of the initial and the 
engineered enzyme for the new substrate are found to be similar, even though structure-guided 
engineering aimed at increasing enzyme binding affinity to the new substrate. 

The remarkable success of the conversion of trypsin’s specificity into that of chymotrypsin required 
to swap residues located in surface loops distal from the active site, in addition to more structurally 
obvious residues located in the substrate binding pocket (5). These distal sites were not predicted by 
structural analysis but rather through a statistical comparison of the handful of sequences of trypsin 
vs chymotrypsin across phylogeny available at the time. However, this remarkable achievement has 
remained largely limited in scope, as all attempts to engineer reciprocally trypsin specificity in 
chymotrypsin by performing the reverse mutational swap failed (6). 

These observations motivate our approach that does not depend on structural information but 
rather consists in a systematic scan of sequence space. 

Statistical analysis and modeling of protein sequences for protein design. 

On the computational side, our project builds on an approach inspired by statistical physics that 
considers the sequence-function relationship in sequence space rather than in the physical space of 
protein structures. Developed by MW and others, statistical models based on abundant genomic 
data (homologous protein families) yield impressive predictions on protein structure and function 
from sequence data alone (7). Namely, MW’s Direct Coupling Analysis (DCA) predicts amino-acids in 
contact in the tridimensional structure from sequence data alone, and the effect of amino-acid 
mutations. A recent achievement by MW’s group is the computational generation of sequences of 
artificial proteins that rescue in vivo the deletion of an essential metabolic enzyme gene (8), an 
example of the emerging paradigm of statistical protein design that we propose here to extend to 



the design of specificity (see Fig. 1). For this project, MW’s group provides new efficient techniques 
for generative model learning (9). 

 
Figure 1: From statistical sequence models to protein design (8). A multiple sequence alignment of 
homologous proteins is used to estimate 1-point statistics (amino-acid conservation at each position) 
and 2-point statistics (correlated amino-acid usage in pairs of positions), and to infer a DCA model 
whose parameters describe specific amino-acid biases (hi) and two-site couplings (Jij). This generative 
model can be sampled to create synthetic sequences of proteins with functional features identical to 
those of the input natural proteins, as demonstrated in the case of chorismate mutase enzymes (8). 

Large-scale enzyme sequence-function experimental data. 

Our physics-biology interdisciplinary experiments combine droplet microfluidics and molecular 
biology to measure the enzymatic activity of hundreds of protease enzymes. Mutational scans rely 
on saturated mutagenesis, a functional assay and high-throughput DNA sequencing read-out to map 
the effect of every point mutation in a protein sequence on its function (10). We propose to extend 
this approach to a large-scale functional exploration of sequence space of the S1A protease family 
(see Fig. 2A) instead of focusing on the neighborhood of a particular sequence, in order to obtain 
optimal datasets for statistical approaches that have been developed mainly on genomic data. 

Our experiments will harness commercially available large-scale gene synthesis, which can produce 
hundreds of genes of arbitrary sequence and was already put to use in the enzyme design work by 
MW and colleagues (8). 

Contrary to most functional assays for enzymes performed in vivo (8), droplet microfluidics 
technology provides high throughput in vitro enzymatic assays that directly probe enzymatic 
properties (11). Droplet microfluidics relies on the encapsulation of individual enzyme genes from a 
library in micron-size (picoL) droplets. The enzyme library genes are then expressed in droplets and 
their functional properties are assessed by addition of fluorogenic enzymatic substrates by pico-
injection (12), incubation in delay lines, and a fluorescence readout. Droplets are then sorted 
according to this readout by dielectrophoresis (13). Encapsulation, pico-injection, readout and 
sorting occur at up to kHz rates, allowing the screening of libraries of >106 genes in 1 day (11). CN’s 
group has developed a droplet microfluidic setup to quantitatively assay thousands of protease 
enzymes against two substrates in a single experiment (see preliminary results in Fig. 2B&C). 

High-throughput DNA sequencing technologies have been rapidly evolving over the past 15 years, 
with currently two main categories available: 107-1010 reads of 50-200bp at a 10-4bp-1 error rate 
(provided by Illumina) vs 106 reads of <10kb with a 10-2 error rate (provided by Nanopore). Our 
workflow makes use of both types of sequencing to analyze the output of microfluidics enzyme 
library sorting (see preliminary results in Fig. 2B&C). 

• Objectives: 
Our interdisciplinary project will run through 3 successive objectives: 

Objective 1: The PhD candidate will use the existing workflow in CN’s group (Fig. 2) to measure the 
catalytic activity of 200 natural S1A proteases identified with MW to cover as widely and uniformly 
as possible sequence diversity in this enzyme family, against 4 peptide substrates differing by a single 
amino-acid and a protein substrate (FITC-casein), to probe respectively specific vs non-specific 
protease activity. This objective is low risk considering current know-how in CN’s and MW’s groups. 
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Fig. 1. Evolutionary data-driven protein
engineering. (A) MSA of M natural homologs
provides empirical first- and second-order
statistics of amino acids (fai ; f

ab
ij ), which are used

to infer a statistical model with the bmDCA
method. The probability of sequence
a ¼ ða1;…; aLÞ is an exponential function
of a Hamiltonian, or statistical energy, para-
meterized by intrinsic fields hiðaÞ and couplings
Jijða; bÞ acting on amino acids. (B and C) The
model is used to generate N ≫M artificial
sequences that can be tested in a high-
throughput assay for desired functions. (D) CM
is an enzyme occurring at the central branch
point in the shikimate pathway that leads to the
synthesis of Tyr and Phe. (E) Members of the
AroQa and AroQd families of CMs fold into a
domain-swapped dimer (PDB ID 1ECM).
Active site residues are shown with yellow
stick bonds and arise from both subunits
(dark and light blue). A bound substrate
analog is shown in magenta.
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Fig. 2. Design and testing of artificial CM sequences. (A to C) 2D
histograms showing the relationship of first- (A), second- (B), and third-order
(C) statistics of natural and bmDCA-designed sequences. The color scale indicates
the number of counts per bin. (D) The top two principal components of the
pairwise sequence distance matrix of natural homologs (blue circles) overlaid
with a projection of artificial CM sequences (black circles); the position of
EcCM from E. coli is marked with a red plus sign. Artificial sequences both
recapitulate data used for fitting (A and B) and also account for statistical

features of natural data not used for fitting (C and D). (E) Workflow for functional
characterization of CM activity. CM-deficient E. coli cells carrying libraries of
variants were grown under selective conditions in minimal medium, after
which we performed deep sequencing of input and selected populations and
calculation of the r.e. of each variant. (F) The relationship of r.e. to catalytic
power [log10ðkcat=KmÞ] for a number of CM variants yields a “standard curve.”
The assay shows a hyperbolic relationship over the range from complete
lack of CM activity to wild-type EcCM activity.
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Objective 2: From the experimental data, the PhD candidate will learn under MW’s guidance, and in 
close collaboration with his team members, how specificity is encoded in the sequence through 
statistical modeling. The generative model, built upon a generalization of Trinquier et al (9) to the 
case of semi-supervised learning using data partially annotated in Objective 1, will be tested by 
proposing 100 computationally designed synthetic sequences with predicted substrate specificity. 
Objective 3: The PhD candidate will measure under CN’s supervision the catalytic activity and 
specificity profile of the 100 computationally designed enzymes to validate the model predictions. 

We stress that the experimental data obtained from Objective 1 can be exploited in many other ways 
besides Objectives 2 and 3, which provides considerable flexibility over the course of the PhD thesis. 

 
Figure 2. Workflow and preliminary results. A. In our project, 200 proteases (natural homologs) will 
be expressed and assayed individually in microfluidic droplets with a fluorescence readout and sorted 
according to detected activity. Deep sequencing of input and output genes yields sorting enrichments 
that are used to infer statistical models and computationally design proteases. Activity of 100 
designed proteases will be tested with the same experimental workflow. B. Preliminary results on the 
enrichment of >4000 1-point mutants of rat trypsin upon droplet microfluidic sorting for protease 
activity towards a Lys substrate (x-axis=sequence [shown=Nter], y-axis=mutation, red=deleterious, 
blue=neutral/beneficial). C. Sensitive residues (red) are mainly in the structural core and close to the 
substrate (yellow), robust residues (blue) are in the periphery. Residues that bias activity towards Arg 
vs Lys (trypsin natural P1 substrates) are located in-between (green), either close or distal to the 
substrate. Our results are consistent with and extend beyond the literature, and validate the 
experimental workflow for this project. 

• Candidate profile: 
Our project requires a PhD candidate with a physics/engineering background for droplet 
microfluidics experiments and statistical physics models (hence the relevance of EDPIF), together 
with a strong motivation to learn concepts and techniques of experimental and computational 
biology. The PhD candidate will mainly carry out microfluidic/molecular biology experiments in CN’s 
group, and take part to modeling with the support of other members of MW’s group.  
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Figure 8: Fitness landscape of single mutants of rat trypsin 

The four subplots represent the four parts of the rat trypsin, from the 16th to 245th residue according to the 
conventional bovine chymotrypsin numbering, along the x axis. On the y axis, all possible 20 amino-acids are 
organized according to similarity of biochemical properties. Each square describes the behaviour of the single 
mutant featuring the corresponding amino-acid remplacement at the given residue position. Colored squares, 
from red (0) to blue (1), represent the sorted probability for each mutant. Black squares depict the original wild-
type amino-acid for reference. White squares correspond to mutants for which no measurement was obtained in 
our data. The bottom row shows the mean probability computed for each position, depending on all observed 
mutants for this position with a uniform weight. 
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