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Description du projet de recherche doctoral (en français ou en anglais) :  
 
Ce texte sera diffusé en ligne : il ne doit pas excéder 3 pages et est écrit en interligne simple.  

Détailler le contexte, l’objectif scientifique, la justification de l'approche scientifique ainsi que l’adéquation à 
l’initiative/l’Institut. 
 
Le cas échéant, préciser le rôle de chaque encadrant ainsi que les compétences scientifiques apportées. 
Indiquer les publications/productions des encadrants en lien avec le projet. 
Préciser le profil d’étudiant(e) recherché. 

*State of the art and aim of the proposal* 
Although much heavier than electrons, light nuclei, mainly hydrogen, exhibit quantization of the 
vibrational levels, zero-point energy and tunneling. These so-called Nuclear Quantum Effects can 
have a large impact on the structure and the dynamics of materials. Here, we focus on systems with 
hydrogen bonds, as well as on materials in which protons or hydrogen can diffuse, such as solid fuel 
cells, which are relevant for energy harvesting and batteries. Proton diffusion is the key to transport 
phenomena which thus can be significantly impacted by Nuclear Quantum Effects [1,2,3] (tunneling 
in particular). The standard method to account for these effects when simulating the static 
properties at equilibrium is path integrals: the quantum partition function of a nucleus can be 
computed from the classical one for a polymer consisting of P beads (typically, 16≤P≤64 for H at 
room temperature). As a counterpart, this method considerably increases the number of degrees of 
freedom, making the exploration of the potential energy landscape much harder. Moreover, a 
bottleneck of path-integral based methods regards the difficulty in evaluating dynamical properties. 
In principle, all relevant statistical properties can be derived from the partition function of the 
system. This requires a detailed knowledge of the low-energy part of the quantum potential energy 
surface, as given by path integrals, which can be quite different from the classical counterpart. 
Presently, few groups worldwide are working on the calculation of the quantum free energy by 
advanced sampling methods that are largely inspired from statistical mechanics.  
**Here, we aim at systematically exploring the quantum potential energy surface topology by 
combining path-integrals based techniques with the nested sampling exploration method coupled to 
machine learning algorithms and interpolations based on artificial neural networks.**  
The exploration will be performed by smart sampling of the quantum potential energy, by reducing 
as much as possible the number of the sampling points. Potential energy surfaces of real systems 
usually display several local minima and high dimensionality, which makes most sampling algorithms 
converge with difficulty. In this respect, our strategy will be twofold: first, we will reduce the 
number of degrees of freedom, by determining a small dimension base to represent the energy 
surfaces. We will employ principal components analysis and recent algorithms, such as the greedy-
type approaches, like empirical interpolation [4]. The a-posteriori verification of the reduction 
effectiveness will be conducted via the Bayesian evidence, by comparing the model predictions and 
the full calculations. Second, on the reduced models we will apply nested sampling, which turns the 
multi-dimensional problem into a one-dimensional integral, thus considerably reducing the 
computational needs for sampling. The recognition via machine learning methods of cluster 
structures of the sampling points, corresponding to the function minima, will allow to focus on 
specific regions that mostly contribute to the energy landscape. Last but not the least, the sampling 
points that are obtained by nested fit will be used as input for an artificial neural network to 
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improve the accuracy on the description of the potential energy for a given number of evaluations. 
This two-step strategy is compulsory as the single energy (and gradient) evaluation is 
computationally cumbersome: the reduction of the number of degrees of freedom is unavoidable in 
real systems, and allows extracting the significant physical and chemical parameters. 
*The method and the algorithms* 
The ability of nested sampling to reduce the exploration of the multi-dimensional parameter space 
to one-dimensional integrals relies on the construction of an evolving set of sampling points called 
live points. For each step, a new sampling point is found, which by construction corresponds to a 
lower value of the object function. This procedure corresponds to search in a volume whose 
extension depends on the function value, which is a subset (nested) of the region that was sampled 
in the previous steps. This results in an integration with respect to the volume of the nested region 
only. Because of such drastic reduction of dimensions, nested sampling can outperform other 
integration methods, such as Markov-chain Monte Carlo. Moreover, it correctly probes the object 
function in critical cases where the integration domain changes dramatically with the value of the 
function, as in the case of first-order transitions [5,6]. However, in the presence of several local 
minima, the recursive search of new live points becomes inefficient and the algorithm hardly 
converges, possibly leaving un-explored regions out of the integration domain. In solid-state physics, 
global optimization and multi-particle exploration have been employed to study partition functions 
and potential energy surfaces. In data analysis applications of nested sampling, cluster recognition 
methods have been implemented by one of the promoters, via the mean shift method [7]. 
During the thesis, a new version of NestedFit (a nested sampling code developed by M. Trassinelli 
[7,8]) will be developed and interfaced to the path-integral code for specific cases (developed by F. 
Finocchi and collaborators [1,2,3]). Several machine learning methods using unsupervised 
algorithms will be also implemented and tested for an efficient cluster recognition of the nested 
sampling live points. In particular, we will use the mean shift approach, as well as other methods (k-
nearest neighbor, x-means, DBSCAN, spectral clustering, etc.). Particularly promising is the 
conjunction of artificial neural network methods and nested sampling, which has been successfully 
employed for data analysis of gravitational waves [9]. A same accuracy of the likelihood function 
integral is obtained using 2-10 times fewer sampling points. In this project, we aim at applying the 
same strategy for the evaluation of the partition function; we remind that each energy and force 
computation implies the time-consuming solution of a Schrödinger-like equation. The Nested 
sampling algorithm, coupled to cluster recognition strategies, allows a drastic reduction of the 
number of calls to the Schrödinger solver. An additional reduction will be obtained with the use of 
the neural network, using as inputs the sampling point obtained from a crude nested sampling 
exploration.  
The Fortran programming language will be preferred for its high computation speed, with 
calculation modules called by a Python handler. Due to the computationally intense path-integral 
simulations, we plan to make use of parallel algorithms, both when computing the object function 
and in the evolution of the live points.  
In parallel to the characterization of the potential energy from the ab initio calculations, a modeling 
of the complex landscape will be carried out for specific problems that are described in the next 
section. The very first step will be based on the reduction of the system degrees of freedom by 
discrete empirical interpolation methods [10]. The identification of the more adapted model will be 
obtained by comparing the real data (that are extracted from the Schrödinger solver) and the model 
predictions via two complementary approaches: (I) the computation of Bayesian evidence (i.e., the 
marginal likelihood) and (II) model error estimates from greedy-type algorithms. Concerning (I), 
model predictions are compared to Schrödinger-solver data, to evaluate probability of the model 
itself from the computation of the Bayesian evidence with the NestedFit program. Concerning (II), 
the fitting steps in greedy algorithms consist in adding parameters iteratively to the current model 
to correct the error (which is here analogous to the difference between the model and the real 
data), while keeping the number of parameters as low as possible by discriminatory steps [11]. 
*Benchmarks and Applications* 
The first developments and tests will be performed on Lennard-Jones (LJ) clusters with classical 
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nuclei. This system was the object of the first implementation of nested sampling on potential 
energy surfaces exploration [5] and represents a tough benchmark. In a second stage, we will 
include quantum effects in LJ clusters using the path integrals formalism, in analogy with a recent 
work employing nested sampling on simplified molecular models [12].  After extensive tests on LJ 
clusters, the developed methods and tools will be applied to one or several cases discussed below, 
depending on the expected specific speed-up. 
- Water clusters: We will explore the quantum potential energy surface of (H2O)n water clusters 
(n≤8). The zero-point energy in water molecules is much larger than the thermal energy, and nuclear 
quantum effects are particularly significant in finite (H2O)n clusters due to the reduced connectivity 
with respect to bulk water. 
- H diffusion: If successful, we will use the developed methods in bulk materials with hydrogen 
bonds, where protons can hop. As these bonds are generally described via the computationally 
demanding Density Functional Theory, the use of efficient sampling methods is crucial. Hydrated 
materials of geophysical interest for their capability to transport water in Earth’s mantle such as 
AlOOH [1] or Mg(OH)2 [2] display yet not entirely understood quantum-driven phase transitions or 
protonic diffusion processes. In analogy with hydroxides under high pressures, proton transfer in 
perovskites (useful materials for solid fuel cells) is governed by distinct mechanisms below room 
temperature and ambient pressure. 
- Analysis of atomic spectroscopy data: In addition to nuclear quantum effects studies, we plan to 
apply the developed codes for analyzing complex experimental data such as crystal high-resolution 
spectra of highly charged ions. To reach a very high-accuracy, the response function of the 
employed crystal X-ray spectrometer has to be modeled from simulations [8,13]. The poor statistics 
and possible presence of unresolved spectral components generally generate several maxima in the 
likelihood function. The study of its maxima will be performed using the same strategy than for the 
exploration of potential energy surfaces. 

The Ph.D. student will benefit from a very open scientific and interdisciplinary environment. This 
project brings together the expertise of two physicists who, despite being in the same lab, have two 
distinct research domains (theory on solid state physics and Bayesian methods for atomic 
spectroscopy). He/She will benefit in addition from the collaboration with Julien Salomon at INRIA 
for his mathematical skills in model selection algorithms. We also expect to benefit from the SCAI 
environment, exchanging with researchers in applied mathematics and statistical learning. Their 
expertise could be crucial for choosing the most adapted machine learning methods and for the 
implementation of neural network for our specific problems, as there are only a couple of previous 
works that combined machine learning with nested sampling strategies. The ideal candidate has a 
background in quantum and statistical physics, applied mathematics and good programming skills. 
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