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Geometric deep manifold learning combined with NLP for protein movies

Background

Artificial intelligence, and more specifically deep learning, has recently emerged as a powerful approach to
exploit the massive amounts of protein sequence and structure data available nowadays toward guiding
biological intervention to improve human health. A couple of months ago, the alphaFold2 architecture from
DeepMind revolutionised the field of protein structure prediction by reaching unprecedented levels of near-
experimental accuracy [1]. This achievement has been made possible mostly thanks to the latest
improvements in geometric learning and natural language processing (NLP) techniques. In parallel, several
groups have shown that knowledge can be effectively transferred from semi-supervised learning of huge
amounts of (meta-)genomics data to a wide range of supervised downstream tasks, including protein
classification, functional annotation, mutational outcome prediction and contact inference [2-3].

While the problem of determining how a protein folds in three dimensions (3D) is essentially solved,
accessing protein motions is becoming more central than ever before. At the European level, the ELIXIR
community is investing efforts right now to create a comprehensive resource for structural diversity and
flexibility in the Protein Data Bank (PDB) [8], which contains all experimentally-determined protein 3D
structures. Indeed, proteins are flexible biological objects, constantly moving and changing their shape to
interact with their environment and cellular partners. This inherent flexibility is highly relevant for protein
functioning [4]. For instance, single mutations or small sequence variations may have dramatic
consequences on the ability of proteins to adapt to their partners, without any visible effect on their static
3D structure [5-6]. Moreover, targeting protein motions is a powerful strategy to control protein function in
physio-pathological contexts and develop drugs with less side effects [7]. Experimentally, it is very difficult
to observe proteins directly in action, and we have mostly access to isolated clusters of
“snapshots” (conformations) representative of a few functional states. Biomolecular simulations can be
used to generate conformational ensembles, but they remain computationally costly. Alternatively,
relatively simple physics-based models where the protein is represented by an elastic network have proven
very useful to extrapolate functional motions, starting from a single structure [8-9]. Nevertheless, these
models are unable to capture changes involving substantial rearrangements in the topology of the starting
network.

Objectives

The goal of this project is to explore the contribution of recent methods of statistical learning and deep
neural networks to predict motions and conformational states relevant to protein functioning. In other
words, we aim at learning low-dimensional motion manifolds using sparse high-dimensional observations
(3D structures). Our specific objectives will be to:

1. Develop algorithms capable of operating on compact representations of geometric data structures,
taking into account the specific (physico-chemical) constraints applying on them and the
uncertainties in the observations;

2. Develop a generative model able to recover observed states, interpolate between them and
extrapolate to previously unseen states. The generation will be conditioned on the protein
sequence of amino acids, and on low-resolution experimental data for guiding the extrapolation;

3. Generate new plausible states for a set of proteins with therapeutic interest, that could be targeted
by small molecules toward modulating their function.

Data

As input data, we will use the protein 3D structures contained in the PDB [10], and also 3D conformations
generated from elastic networks representing these structures [8-9]. We will focus on specific protein
families retrieved from the Pfam database [11], e.g. K-Ras/H-Ras, TSG/OG, Active/Inactive Kinase, which are
therapeutic targets and for which abundant structural information is available. To validate the predictions,
we will use experimental structures, cryo-electron-microscopy movies and data generated by biomolecular
simulations (MoDEL [12], GPCRMD [13]...). Low-resolution solution experimental data collected at
physiological conditions, such as small-angle scattering profiles (SAXS), will be used as an additional
validation and as priors for the generation of previously unseen states. We would like to emphasise that the



proteins’ environments (pH, ligands, partners...) are reflected in the experimental observations, and hence,
they will be implicitly modelled.

Methodology and preliminary work

Motion extraction from a set of static molecular structures can be seen as manifold learning [14]. Our
working hypothesis will be that 3D molecular shapes, albeit highly complex, lie on learnable low-
dimensional manifolds. This is supported by the observations that the number of distinct protein functional
states is very limited [15-17], and by our recent findings that protein functional motions can be very
efficiently described with only a few nonlinear collective coordinates [7,8]. Specifically, the candidate will
build an encoder-decoder architecture that will learn a continuous K-dimensional protein motion manifold
from a set of static structures defined in a N-dimensional space, with K<<N. To generate new structures, we
will draw samples from the learnt manifold. Since the input 3D data are very sparse, learning the manifold
using only geometrical information will be very challenging. To cope with this issue, we will transfer
knowledge from publicly accessible transformer models pre-trained on hundreds of millions of sequences
observed in nature [2-3]. The attention filters implemented in these models capture long-range
dependencies between the protein amino-acid residues, and some of these dependencies are very strong
indicators for contacts in 3D [18]. We hypothesise that the information encoded in these filters is also
relevant to the way residues move together, and can be exploited to define “basis sets” to reconstruct the
motion manifold.

The candidate will investigate different types of representations for the input data, building on and
extending recent developments by SG’s team to produce locally equivariant representations of protein
structures (oriented sets of Gaussian clouds [19], Voronoi 3D tessellations and molecular graphs [20]) and/
or rotation-equivariant convolutional operators [21]. We will develop strategies to deal with uncertainties
and dependencies in the input data. Specifically, we will explicitly use structural annotations of flexibility
and disorder (high temperature factors, missing regions...) as indicators of the “dynamical potential” of the
different regions of the input structure. Moreover, we will include some probabilistic account of the
dependencies between the experimental observations and the simulated data generated from them.
Finally, we will explicitly enforce biological and physical priors in the designed architecture to control its
computational and memory footprint and to ease its interpretability.

Expected outcomes

. Novel deep architectures that will combine elements from NLP and geometric learning
. A set of algorithms operating on 3D shapes defined with specific physico-chemical constraints
. A set of family-specific expressive low-dimensional manifolds for protein 3D shapes and motions

. A set of therapeutic targets, in the form of motions and previously uncharacterized conformational
states for several disease-related proteins

Suitability for SCAI

The project is highly interdisciplinary, at the interface between computer science, biology, mathematics, and
physics. Specifically, it lies at the cross-talk between artificial intelligence, genomics and structural
bioinformatics. The project embeds original concepts about the sequence-structure-dynamics-function
relationship. It comprises a development part aiming at producing new algorithms for manifold learning
combining concepts and techniques from geometric learning and natural language processing, and an
applicative part toward the description of protein motions and states that are not accessible experimentally
and that could be exploited to develop new drugs.

Role of each supervisor / skills provided

EL and SG will co-supervise the student (50/50). EL will contribute with her expertise in the analysis and
manipulation of protein sequences. She has developed methods exploiting the evolutionary relationships
between natural sequences for the prediction of protein interactions and mutational outcomes. She has
also investigated the impact of single mutations and of alternative-splicing-induced sequence variations on
protein structural dynamics. Additionally, she has contributed a proof-of-concept of the targeting of protein
motions by drugs.



Previous works in the team of EL directly related to the subject:

- Ait-hamlat A., DJ. Zea, A. Labeeuw, L. Polit, H. Richard and E. Laine. (2020) Transcripts’ evolutionary
history and structural dynamics give mechanistic insights into the functional diversity of the JNK family. J
Mol Biol 432:2121-2140.

- Laine E., Y. Karami and A. Carbone. (2019) GEMME: a simple and fast global epistatic model predicting
mutational effects. Mol Biol Evol. 36:2604—-2619.

- Karami Y., T. Bitard-Feildel, E. Laine and A. Carbone. (2018) "Infostery" analysis of short molecular
dynamics simulations identifies highly sensitive residues and predicts deleterious mutations, Scientific
Reports. 8 :16126.

- Laine E., C. Goncalves, J. Karst, A. Lesnard, S. Rault, W.-J. Tang, TE. Malliavin, D. Ladant and A. Blondel.
(2010) Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema
factor. PNAS 107:11277-82.

SG will bring his expertise in machine learning applied to proteins, and more specifically in geometric deep
learning. His very unique expertise in the development of deep learning architectures for 3D structures of
molecules is recognised both at the national level (invitation to present DL for structural biology at the
prospective colloquium « Science des données, IA et biologie », 12/2020) and at the international level
(invitation to animate the CASP14 round table on DL, 12/2020, top results in CASP protein structure
prediction challenges). He also leads the data-related work-package of the ELIXIR initiative on charting the
experimentally sampled conformational diversity of native proteins by exploiting data from the PDB.

Previous works in the team of SG directly related to the subject:

- lgashov, I., Pavlichenko, N., & Grudinin, S. (2020). Spherical convolutions on molecular graphs for protein
model quality assessment. arXiv preprint arXiv:2011.07980.

- lgashov, ., Olechnovic, K., Kadukova, M., Venclovas, C., & Grudinin, S. (2021). VoroCNN: Deep
convolutional neural network built on 3D Voronoi tessellation of protein structures. Bioinformatics. In
press.

- Pagés G, Charmettant B, Grudinin S. (2019) Protein model quality assessment using 3D oriented
convolutional neural networks. Bioinformatics. 35:3313-3319.

- Derevyanko G, Grudinin S, Bengio Y, Lamoureux G (2018) Deep convolutional networks for quality
assessment of protein folds. Bioinformatics. 34:4046-4053.

- Hoffmann, A., & Grudinin, S. (2017). NOLB: Nonlinear rigid block normal-mode analysis method. Journal
of chemical theory and computation, 13(5), 2123-2134.

Both EL and SG have some expertise in the analysis and modelling of protein structures and motions. In the
past, they have collaborated to develop approaches combining sequence- and structure-based information
to predict protein structures and complexes (joint participation to CASP and CAPRI), and on the prediction/
description protein functional transitions:

- Grudinin, S, Laine, E., & Hoffmann, A. (2020). Predicting protein functional motions: an old recipe with a
new twist. Biophysical journal, 118(10), 2513-2525.

- Laine, E., & Grudinin, S. (2021). HOPMA: Boosting protein functional dynamics with colored contact
maps. bioRxiv, 2020-12.

Profile of the desired student:

S/he should have a solid background in computer science or applied mathematics, very good programming
skills (C++ and Python) and deep knowledge in linear algebra. S/he should have some knowledge in biology
and some familiarity with biological objects such as protein sequences and structures. Teamwork and
excellent communication skills are essential for the achievement of the project.



References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Callaway, E. (2020). 'It will change everything': DeepMind's Al makes gigantic leap in solving protein
structures. Nature.

Rives, A., Goyal, S., Meier, J., Guo, D., Ott, M., Zitnick, C. L., ... & Fergus, R. (2019). Biological
structure and function emerge from scaling unsupervised learning to 250 million protein sequences.
bioRxiv, 622803

Elnaggar, A., Heinzinger, M., Dallago, C., Rihawi, G., Wang, Y., Jones, L., ... & Rost, B. (2020).
ProtTrans: Towards Cracking the Language of Life's Code Through Self-Supervised Deep Learning
and High Performance Computing. arXiv preprint arXiv:2007.06225.

Gerstein, M., & Echols, N. (2004). Exploring the range of protein flexibility, from a structural
proteomics perspective. Current opinion in chemical biology, 8(1), 14-19.

Karami, Y., Bitard-Feildel, T., Laine, E., & Carbone, A. (2018). “Infostery” analysis of short molecular
dynamics simulations identifies highly sensitive residues and predicts deleterious mutations.
Scientific reports, 8(1), 1-18.

Ait-Hamlat, A., Zea, D. J., Labeeuw, A., Polit, L., Richard, H., & Laine, E. (2020). Transcripts’
evolutionary history and structural dynamics give mechanistic insights into the functional diversity
of the JNK family. Journal of molecular biology, 432(7), 2121-2140.

Laine, E., Goncalves, C., Karst, J. C., Lesnard, A., Rault, S., Tang, W. J., ... & Blondel, A. (2010). Use of
allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor.
Proceedings of the National Academy of Sciences, 107(25), 11277-11282.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., ... & Bourne, P. E.
(2000). The protein data bank. Nucleic acids research, 28(1), 235-242.

Hoffmann, A., & Grudinin, S. (2017). NOLB: Nonlinear rigid block normal-mode analysis method.
Journal of chemical theory and computation, 13(5), 2123-2134.

Grudinin, S., Laine, E., & Hoffmann, A. (2020). Predicting protein functional motions: an old recipe
with a new twist. Biophysical journal, 118(10), 2513-2525

Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., ... & Eddy, S. R. (2004).
The Pfam protein families database. Nucleic acids research, 32(suppl_1), D138-D141.

Meyer, T., D'Abramo, M., Hospital, A., Rueda, M., Ferrer-Costa, C., Pérez, A, ... & Orozco, M. (2010).
MoDEL (Molecular Dynamics Extended Library): a database of atomistic molecular dynamics
trajectories. Structure, 18(11), 1399-1409.

Rodriguez-Espigares, |., Torrens-Fontanals, M., Tiemann, J. K., Aranda-Garcia, D., Ramirez-Anguita, J.
M., Stepniewski, T. M., ... & Selent, J. (2020). GPCRmd uncovers the dynamics of the 3D-GPCRome.
Nature Methods, 17(8), 777-787

Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of dimensionality.
AMS math challenges lecture, 1(2000), 32.

Wei, G., Xi, W., Nussinov, R., & Ma, B. (2016). Protein ensembles: how does nature harness
thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in
the cell. Chemical reviews, 116(11), 6516-6551

Keedy, D. A., Kenner, L. R., Warkentin, M., Woldeyes, R. A., Hopkins, J. B., Thompson, M. C,, ... &
Fraser, J. S. (2015). Mapping the conformational landscape of a dynamic enzyme by
multitemperature and XFEL crystallography. Elife, 4, e07574.

Campbell, E., Kaltenbach, M., Correy, G. J., Carr, P. D., Porebski, B. T., Livingstone, E. K., ... & Jackson,
C. ). (2016). The role of protein dynamics in the evolution of new enzyme function. Nature chemical
biology, 12(11), 944-950.

Rao, R., Ovchinnikov, S., Meier, J., Rives, A., & Sercu, T. (2020). Transformer protein language models
are unsupervised structure learners. bioRxiv.

Pages, G., Charmettant, B., & Grudinin, S. (2019). Protein model quality assessment using 3D
oriented convolutional neural networks. Bioinformatics, 35(18), 3313-3319.

Igashov, I., Olechnovic, K., Kadukova, M., Venclovas, C., & Grudinin, S. (2020). VoroCNN: Deep
convolutional neural network built on 3D Voronoi tessellation of protein structures. bioRxiv.
Igashov, I., Pavlichenko, N., & Grudinin, S. (2020). Spherical convolutions on molecular graphs for
protein model quality assessment. arXiv preprint arXiv:2011.07980.



	PROGRAMME INTITUTS ET INITIATIVES
	Appel à projet – campagne 2021
	Proposition de projet de recherche doctoral (PRD)

