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Machine Learning of turbulence models in  
Computational Fluid Dynamics 

Context 
Numerical simulation of fluids plays an essential role in modeling complex physical phenomena in 
domains ranging from climate to aerodynamics. Fluid flows are well described by Navier-Stokes 
equations, but solving these equations at all scales remains extremely complex in many situations. A 
typical example is turbulent fluid flows characterized by a a wide range of spatial and temporal 
scales. Direct Numerical Simulation (DNS) is usually prohibitive and one has to resort to smoothed 
versions of Navier-Stokes. Unfortunately these methods present important weaknesses. The 
increased availabilty of large amounts of high fidelity data and the recent development and 
deployment of powerful machine learning methods has motivated a surge of recent work for using 
machine learning in the context of computational fluid dynamics (CFD), with the objectives of 
reducing computation costs and of solving complex problems like turbulence modeling. Combining 
powerful statistical techniques and model-based methods leads to an entirely new perspective for 
CFD. From the machine learning (ML) side, modeling complex dynamical systems and combining 
model-based and data-based approaches is the topic of active new research directions. All the lead 
conferences in the ML domain now feature topics such as physics and ML and dynamical systems and 
ML. This is then the context of this project, and our aim is to develop the interplay between Deep 
Learning (DL) and CFD in order to improve turbulence modeling and to challenge state of the art ML 
techniques. 

Motivation 
CFD  models are the  golden standard  for preliminary  and advanced aerodynamic design  and   
optimization.  Due to the high characteristic Reynolds numbers (representative of the  ratio of 
inertial to viscous  forces in the flow), most  CFD applications deal with  flows in  the turbulent 
regime.  High-fidelity CFD models like DNS or LES (Large  Eddy Simulation)  are very costly for 
complex high-Reynolds  flows, and  lower fidelity approaches, relying  on the Reynolds-Averaged  
Navier-Stokes  (RANS)  equations represent the workhorse for engineering flow simulations. Due to 
the non-linearity of Navier-Stoles equations, unclosed terms appear in the averaging process and a 
turbulence model must be introduced to account for the unresolved flow scales.  Despite much 
theoretical effort done for developing turbulence models on a physically sound basis, turbulence 
models yet rely on a simplified description of turbulence and they need a significant amount of 
empiricism and expert judgement both for defining the model mathematical structure and for 
calibrating the associated closure coefficients. A review of uncertainties and limitations of RANS 
models can be found in (Xiao and Cinnella, 2019). Building a universal RANS  model valid for a wide 
range of flow applications is hard, and likely impossible, already for statistically steady turbulent 
flows. Inaccuracies are even more critical for flow simulations characterized by mean flow 
unsteadiness, where one needs to predict the average dynamics of the flow field.  

The availability of a larger and larger amounts of high-fidelity numerical and experimental data for 
turbulent flow configurations has motivated interest in using modern ML tools to guide and 
automatize the development of turbulence models by learning from data (Durasaimy et al., 2019), 
while incorporating in the learning process physical constrains ensuring a physically acceptable 
behavior of the solution at any condition (see SOTA below). This gives promising results for RANS 
simulations statistically steady flows, leading to machine-learned, augmented turbulence models 
(e.g. the SpaRTA models of Schmeltzer et al., 2020). On the other hand, much work has been done in 
using ML to build reduced-order models of the turbulent dynamics of a given flow, namely, for the 
purpose of close-loop flow control (e.g., Gautier et al., 2015). Such models are limited to relatively 



low Reynolds number flows, and they can be hardly generalized to different flow cases. Finally, to our 
best knowledge, no attemps have been done yet to develop ML augmented RANS models for 
unsteady flow simulations.  

Deploying ML for CFD is then a challenging and timely research area which has only started to be 
explored.  We will address in the thesis project two main challenges as described below. 

Combining CFD models and Deep Learning 

Our objective is to improve traditional CFD models, both in terms of complexity and of accuracy of 
the predictions,  with  the addition of ML components. Recent progresses, and the generalized use of 
automatic differentiation both for differentiable solvers and DL algorithms have paved the road to 
the integration of DL techniques and ODE/PDE solvers. In the ML community, a starting point for 
such investigations was the Neural ODE paper (Chen 2018) that promoted the use of ODE solvers for 
ML problems.  This however remains limited to simple temporal dynamics and the problems of 
solving complex PDE requiring efficient space and time discretization remains fully open. Combining 
statistical and numerical models raises many open questions such as characterizing the solutions of 
such systems and their coherence, and deriving efficient combination frameworks. We advocate for 
this research the use of DL modules for complementing CFD solvers, in the spirit of (Le Guen 2021) 
who introduced a principled approach however still limited to basic PDEs. In our new context, we will 
analyze how to model unclosed terms in the RANS equations. This approach can be seen as a 
generalization of classical closure models. In order to make easier this theoretical analysis, the 
approach will be first developed for a scalar surrogate of the Navier-Stokes equations, namely, the 
nonlinear Burgers’ equation, which has been widely used in the literature as a simplified ansatz for 
Navier-Stokes turbulence. The framework will then be deployed and adapted to the specificity of 
unsteady RANS simulations. Turbulence model agmentation will be achieved by supplementing 
classical closure models for which we have prior knowledge with data-driven corrections. The whole 
system will be trained end to end with the DL modules and the numerical solvers using high-fidelity 
data. Note that the latter may be incomplete (selected flow properties are observed on a restricted 
portion of the flow domain) or noisy (this is often the case for experimental data), which must be 
properly accounted for in the learning procedure. 

Learning in multiple environments 

In order to be useful for CFD applications a learned model must accurately simulate flows outside of 
the training distribution: operational conditions and environment may vary according to different 
physical factors thus requiring models to extrapolate to these new conditions. DL could in principle 
be extremely efficient for learning complex dynamics. However since they do not include the 
underlying physics, they often do not enforce physical constraints such as incompressibility or 
conservation laws. Said otherwise, even when they perform well on training data, they struggle with 
generalization to out-of-distribution data. Recent ML research mostly considered this problem for 
static data and classification or regression problems, promoting either robust optimization methods 
or learning invariant representations (Arjovsky 2020).  This is currently a very active research topic, 
but this is not adapted to our dynamical context which is much more complex. We will adopt a new 
perspective by considering learning dynamical models from multiple environments and propose a 
new framework leveraging the commonalities and discrepancies among environments. This could be 
achieved by capturing common dynamic characteristics in shared modules while additional terms 
capture environment specific dynamics. We expect this new setting to be more robust to new 
distributions than classical empirical risk minimization or robust optimization schemes. This setting 
will be analyzed both theoretically and for practical situations. We will in particular consider 
generalizing to different geometries sharing common flow features and to different flow conditions 
for a given geometry. Both issues are largely open. 



Position w.r.t. State of the Art 
The general problem of solving PDEs with neural networks is not new but it is only very recently, with 
the large scale deploiement of DL methods, that the topic gained momentum and started to 
motivate the interest of several communities. The first dedicated workshop was held at ICLR 2020, a 
major ML conference. In the field of CFD, a family of approaches uses ML to fit closures to classical 
turbulence models  based on agreement with DNS (Duraisamy 2019). These models are mostly 
restricted to a narrow class of simple, steady, flows. Pure ML approaches advocate replacing the CFD 
pipeline with ML models trained from simulations (Bhattacharya 2020, Wang 2020). However, pure 
ML methods do not generalize well when trained on complex dynamics and they lack physical 
plausibility. Our approach is more in the line of combining model based and data based ideas in a 
hybrid framework (Willard 2020, Sirignano 2020, Le Guen 2021, Kochlov 2021, Um 2020). The 
problems adressed in this project build on this series of emerging ideas by adressing new problems. 

Adequacy to SCAI and Role of the participants 
The thesis project promotes the development of recent machine learning advances in the field of 
computational fluid dynamics. Until very recently these two domains were completely separated and 
this is only during the last 2 years, thanks to the considerable advances of Deep Learning and the 
increased availability of simulation data, that tresearchers from both fields started to cooperate. This 
is then a typical emerging intedisciplinary domain which. As for the participants, the project gathers 
specialists from the two disciplines involved in the thesis topic: fluid dynamics @ ¶’Alembert and 
machine learning @LIP6. ¶’Alembert has a recognized expertise in CFD, turbulence modelling and in 
the development of open-box machine-learned RANS models using sparse formal identification 
techniques. The Machine Learning team at LIP6 is well known for its expertise in Deep Learning. One 
of the topic of the team has been for some years an interdisplinary research on dynamical systems 
involving cooperation with maths and climate specialists. This cooperation offers a new opportunity 
for enlarging this research domain to a new discipline (mechanics) and a new lab. (¶’Alembert) We 
consider that this has the potential to open the door to a new series of cooperations between 
mechanics and computer science at Sorbonne University. 

Profil recherché: master ou école d’ingénieur, bonne bases en mathématiques appliquées à la 
mécanique des fluides, bonne connaissance du machine learning. 
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